【含义】 需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。
【数量关系】 绝大多数要用最大公约数、最小公倍数来解答。
【解题思路和方法】 先确定题目中要用最大公约数或者最小公倍数,再求出答案。最大公约数和最小公倍数的求法,最常用的是“短除法”。
例1 一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?
解 硬纸板的长和宽的最大公约数就是所求的边长。
60和56的最大公约数是4。
答:正方形的边长是4厘米。
例2 甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?
解 要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。 36、30、48的最小公倍数是720。
答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。
例3 一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?
解 相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12。
所以,至少应植树 (60+72+96+84)÷12=26(棵)
答:至少要植26棵树。
例4 一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。又知棋子总数在150到200之间,求棋子总数。
解 如果从总数中取出1个,余下的总数便是4、5、6的公倍数。因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为
60×3+1=181(个)
答:棋子的总数是181个。
29 最值问题2009-12-31 11:15【含义】 科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。这类应用题叫做最值问题。
【数量关系】 一般是求最大值或最小值。
【解题思路和方法】 按照题目的要求,求出最大值或最小值。
例1 在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?
解 先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。这样做,用的时间最少,为9分钟。
答:最少需要9分钟。
例2 在一条公路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?
解 我们采用尝试比较的方法来解答。
集中到1号场总费用为 1×200×10+1×400×40=18000(元)
集中到2号场总费用为 1×100×10+1×400×30=13000(元)
集中到3号场总费用为 1×100×20+1×200×10+1×400×10=12000(元)
集中到4号场总费用为 1×100×30+1×200×20+1×400×10=11000(元)
集中到5号场总费用为 1×100×40+1×200×30=10000(元)
经过比较,显然,集中到5号煤场费用最少。
答:集中到5号煤场费用最少。